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SUMMARY

The method of lines is used in this report for solving one linear,
two nonlinear elliptic boundary value problems and a linear eigenvalue
problem. An analysis of the stability and convergence is made in the linear
cases.

WRSUMi

Dana le pr~sent rapport, on exploite la m6thode des lignes pour

r~soudre un probl~me lin6aire, deux probl~mes non lin~aires de valeurs
elliptiques aux limites et 6galement un probl~me de valeur propre lin~aire.
On effectue une analyse de la stabilit6 et de la convergence dans les
situations lin6aires.
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APPLICATION OF THE METHOD OF LINES TO THE SOLUTION

OF ELLIPTIC PARTIAL DIFFERENTIAL EQUATIONS

CHAPTER 1.0 INTRODUCTION

The method described in this report is known as the method of lines (from here on we refer
to the method as MOL) in the Soviet Union, where it has been used for some forty years. The basic
feature of the method is that derivatives with respect to one of the independent variables remain con-
tinuous, while derivatives with respect to the other independent variables are replaced by finite-
difference approximations. For a two-dimensional problem in a rectangle the region could be consid-
ered as divided into strips by dividing lines (hence the name) parallel to one of the axes. At each line

* the derivatives normal to that line would be replaced by finite differences and the other variable left
continuous. Thus the system of partial differential equations is replaced by a system of ordinary dif-
ferential equations. The resulting ordinary differential equations may then be solved, at least in some
cases, by analytic methods. For instance Poisson's equation with linear boundary conditions has
received much attention, Liskovets (1965) and Leser and Harrison (1966). In the case of more general
equations, particularly those of nonlinear type, analytic solutions of the ordinary differential equations
may be impossible and the problem must be treated as a two-point boundary-value problem to be
solved numerically. This problem may then be solved by either a boundary-value technique such as
finite differences or by the shooting method for two-point boundary-value problems. The former
technique would be equivalent to solving the original problem by the grid finite-difference method.
The shooting method involves estimating unknown conditions at the initial point and integrating the
ordinary differential equations across to the end point. The required boundary conditions at the end
point can then be satisfied by iterating on the missing initial conditions. Because of the elliptic nature
of the partial differential equations this initial-value integration is strictly improper. Indeed it can be
shown (Chapter 3) that the ordinary differential equations are inherently unstable. One of the
purposes of this paper is to convince the reader that in many physical problems of interest accurate
solutions can readily be obtained by MOL even though the problem is incorrectly posed. It is shown
that if the region of interest is divided into sufficiently few strips by the dividing lines then accurate
solutions can be obtained by using high-order finite-difference approximations. As more and more
strips are taken the results may at first improve but they will eventually become meaningless and the

iteration technique will not converge to a solution.I The work done in the Soviet Union on MOL has largely been limited to solving linear
equations of elliptic (as well as parabolic and hyperbolic) type. A 1965 review paper by Liskovets
gives an extensive list of references to provide the mathematical background and development of MOL.
These workers have developed analytic solutions of the linear ordinary differential equations for
certain cases. Also, solutions of Poisson's equation with linear boundary conditions were obtained in
the United States by Leser and Harrison (1966), again using analytic solutions of the ordinary differ-
ential equations.

It appears that MOL (and a similar technique called the method of integral relations) was
first used in nonlinear problems for the supersonic blunt-body problem which is of interest to aero-
dynamicists, Belotserkovskii (1965). Klunker, South and Davis (1971) have discussed more recent
applications of the method to the solution of equations of elliptic type such as the supersonic blunt-
body problem and conical flow problems which are of great importance in aerodynamics. In general
the method has received more attention for solving the correctly posed parabolic type of equation.
Aktas (1978) gives a recent review of some applications of MOL to parabolic and hyperbolic as well as
elliptic problems.

After describing the method of lines in Chapter 2 we then carry out a stability analysis in
Chapter 3. Some examples are next discussed in Chapter 4 and, finally, in Chapter 5, we look at
solutions to eigenvalue problems.
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CHAPTER 2.0 THE METHOD OF LINES

2.1 A Description of the Method

In order to describe the method we consider the simple case of Poisson's equation

+ _ = f(xy) (2.1)
aX2  ay 2

to be solved in a rectangle (see Fig. 2.1) subject the following boundary conditions.

0 on x = 0 (2.2)

and

= sinwTx on y = b (2.3)

Along y = 0 and along x = a the solutions are to be symmetric.

y

b V1 sinrx N

I i--1

SYMMETRY
Im

2

0 X
SYMMETRY a

FIG. 2.1 MOL APPLIED TO A RECTANGLE

This simple linear case is sufficiently detailed to describe the principles of the method of lines. More
complicated equations and boundary conditions can be solved in the same manner. Minor differences
in the treatment of other equations and boundary conditions are seen in the examples of Chapter 4.
For example, mixed derivatives and higher order partial differential equations are handled in the
Example of Section 4.2.

9 -
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Other geometries may be treated after transformation as shown later.

We first take equally spaced lines parallel to the x axis and number them (see Fig. 2.1)
b

0,1,2... N where N is the number of divisions in the region 0<y<b, thus h = N
N

Next we write the Equation (2.1) as a set of ordinary differential equations. Letting p =x

we have, at each line i (i = 0,1 . .. N- 1)

dpi i+l - 20i + oi-I
= f(x,Yi) - h (2.4a)dx h2

d~bi

x=Pi (2.4b)dx

since we have approximated yy by the three point difference formula

4'(x,y+h) - 20i(xy) + (x,y-h)
0yy = h2  + 0(h 2 011 1 ) (2.5)

At line N we have

PN = sin-rx (2.6a)

while at the image line i = -1 we have

0-1 = V/ (2.6b)

The initial and end conditions for the system are

Oi = 0 (2.7)

at x = 0 and

Pi = 0 (2.8)

at x = a to ensure symmetry of V/ about that point.

The system given by (2.4) is now a system of ordinary differential equations with two point
boundary conditions. Thus it can be solved by standard shooting techniques used for solving twojpoint boundary value problems. Some of these methods are given in Keller (1968) in which the



-5.

contracting map approach and the variational approach using Newton's method of iteration are
described. The latter method is much faster than the former and so is to be recommended. We
describe next methods which are similar to the variational approach but which do not set up the
variational equations as such. They are thus easier to program and yet still have the advantage of
second order convergence. We first discuss Newton's method and then Powell's (1965) method as
applied to the shooting technique.

2.2 Newton's Method of Iteration Applied to the Two Point Boundary Value Problem

We first notice that the problem is solved completely provided that we know the initial
slopes

pi = Fi

(i = 0,1 ... N-i) say at x 0. This is clear since a knowledge of Fi enables us to integrate the
Equations (2.4) from x = 0 to x = a by standard methods such as Runge Kutta. The present authors
normally use Hamming's predictor modifier corrector (PMC) method, see Hamming 1959, with the
Runge Kutta starting procedure. The PMC method has a discretization error 0(bx5 ) and requires half
as many gradient evaluations as the full Runge Kutta method. On each evaluation of the gradients in
(2.4) the boundary conditions (2.6) are used and thus automatically satisfied. Hence integration to
x = a (provided round off errors, discretization errors and inherent instability are negligible - see later)
is achieved and we recover the boundary condition (2.8). Now, all boundary conditions are satisfied
as well as the differential equations and we have a complete solution.

However, since we do not know F i a priori, we must develop some scheme for improving on
a given estimate of F i . We notice that the only boundary conditions not satisfied after an integration
of (2.4) with a given estimate of F i are the conditions (2.8). The procedure to follow therefore is to

di
drive the values- at x = a closer to zero by suitably adjusting F i .

Let

d~i

e= - (2.9)dx

at x = a. Then 2e? can be made smaller by making changes to Fj as indicated by the Newton iteration

N-i 3ei
Z - F. = -e 1 (i = 0,1 ... N-1) (2.10)

j=0 aJ"

The above form requires approximations to the partial derivatives

ae i

aFj

To obtain these Keller (1968), amongst others, uses the variational equations. However the present
authors have found that it is not necessary to use the variational equations, instead one can write

-" , .1
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aei  ei(FoF ... Fj + AF i ... F N _ ) - ei(FoF 1 ... Fj ... FNI)
-A - - (2.11)aFj AFj

where AF. is a small value normally taken as 10-6AF. or 10-6 if IAFjl<l (64 bit words with approxi-
mately 1d decimal digit accuracy have been used in all our computations). In (2.11) the ej have been
written as functions of F0 .. . FN1-I since a knowledge of F0 ... FNj enables us to integrate (2.4)
from x = 0 to x = a and so we find the ei as implicit functions of F0 ... FN1"

Notice that the form (2.11) is exact if ei is a linear function of F0 ... FN-..

The procedure to find the derivatives

3Fj

is therefore to make an integration of (2.4) with the latest estimate F 0 ... FN_- 1 . Then make successive
integrations with F} changed to F + AF for j = 0,1 ... N-1 and after each integration substitute into
(2.11) to find the required partial derivatives. Having completed these integrations we now substitute
(2.11) into (2.10) and find the changes SFj by standard linear methods such as Gaussian elimination.

The values thus obtained for 6Fj can now be used to improve on the last estimate for Fj.

This use of SFj is described below.

2.2.1 The Linear Case

If the differential equations and boundary conditions are linear as in our example then new
values of Fj given by

Fj = Fi (old) + 6Fj

with 6Fj found from (2.10) are the correct values. This follows from the fact that Newton's scheme
(2.10) is quadratic in convergence so that if ei is a linear function of Fj then the correction SFj is
exact. In addition the formula (2.11) is exact for linear systems.

2.2.2 The Nonlinear Case and the Modified Newton Method

It is well known that Newton's method will not, in general, converge if the functions ei are
nonlinear functions of F. unless the initial estimate is sufficiently near the solution. However it can be
shown (see for example kowalik and Osborne, 1968) that the direction given by (2.10) i.e.

8F = (SF0 , SF.... SFNI)

is downhill in the sense that Ze? will decrease by changing Fj such that

Fj = Fj (old) + X6Fj (2.12)

with k>0. This feature leads us to the modified Newton procedure whereby X in (2.12) is chosen such
that Lei using new values of Fj is less than the previous Xe using old values. Thus we select A = 1,

9 __________ ,
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compute Fj from (2.12) and hence compute new values of 2e by integration as described previously
and accept the new values of Fj if they give an improvement to e. If the new values do not
improvement we take X = 1/2 and repeat the procedure. On successive failures, if they occur, we use

= 1/4, 1/8 ... and so on until success is achieved. Once we have a success we then use (2.10) to find
a new direction in which to advance. This method has been used successfully by Jones (1973), amongst
others.

Some improvement in efficiency can be made to the above modified Newton method and
this is now described. Newton's method requires a knowledge of the partial derivatives

ae,

and this determination, from (2.11), may be costly since N integrations of (2.4) are needed. In
Newton's method as described above these partial derivatives have to be evaluated at each step given by
(2.10). However Newton's method can in some cases be improved on by using the following simplified
version (see Collatz (1966) for more details).

Essentially the method consists of using (2.10) repeatedly with values

ae,
3Fj

unchanged from an earlier step. The simplified version is illustrated in Figure 2.2 for the one unknown
F0 . Clearly

I I

F
0

FIG. 2.2 SIMPLIFIED NEWTON METHOD

convergence measured in terms of number of steps is slower. However it has the advantage that the
derivatives

M ---- --.
i1
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aei

do not have to be evaluated repeatedly nor does the system (2.10) have to be solved completely since
the inverse of

36
J=

aF

can be computed once and stored. South and Klunker (1969) have used this method successfully for
conical flow calculations. They find that the method works well if one is sufficiently near the solution.
If not one may use several modified Newton steps prior to using the simplified version.

2.3 Powell's Method of Iteration

Powell's method for minimizing a sum of squares of nonlinear functions is given in Powell
(1965). The method minimizes

N-1
2

i=0

with respect to F0 ,F1 ... FM-I (M<N), where the N functions ei are nonlinear functions of the M
unknowns F. The method is essentially that of least squares minimization in which le 2 is minimized
by making changes to Fj indicated by the direction 5F given by

M-1 fN-1 aek aek 'IN-i aek
k=0 i 6Fj=- - ek (i=0...M-1) (2.13)

j0O k-0 aFi aFj k=Oa0

The step to find new values of F = (F0 ,F1 ... FM I) is given by

F = F_(old) + X6F

2
in which X is chosen (by search) such that lei is minimized along the direction 6F. During the search
along 6F to locate the minimum, functions ei have to be evaluated at different iialues of X; thus one
can calculate an approximation, by differences, to the rate of change of ei along the direction 6F at
the new minimum point. Powell shows how these partial derivatives can be used in conjunction with
previous values of

aEk

a Fi

to determine the next step given by (2.13).

. . .. . .Ii
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In principle the method guarantees convergence since we do not take a step unless Xe2

decreases. In practice the method has been found to fail but only rarely and usually when a poor
estimate has been made. Powell's method when it first appeared in 1965 was probably the most
efficient method of its day. Other methods which may now be more efficient than Powell's are the
spiral method of Jones (1970) and Peckham's (1970) method but these have not been tried on two
point boundary value problems.

The advantage of Powell's method over the modified and/or simplified Newton method is
firstly that Powell's method is usually more efficient and secondly that fewer "unknowns" can be used
to determine the solution. In MOL it may be that the unknown function, in our example

ax

at x 0, can be represented in a series expansion, say

M-1
=X Fj Cos jy (2.14)

ax 0

(M<<N) and in this way the work involved in finding the partial derivatives

aej

is greatly reduced since now we have to integrate (2.4) only M times to obtain the required partial
derivatives. Such a form (2.14) was used in the conical flow calculation by Jones (1968).

Powell's method also has quadratic convergence provided one is sufficiently near the
solution and provided e i = 0 at the minimum. Note that the correct solution is again obtained in one
step if the system is linear.

During the preceding discussion the phrase "provided one is sufficiently close to the
solution" keeps recurring and indeed it is very important in nonlinear cases to have reasonable
estimates of the unknowns particularly to cut down computing costs. In view of the importance we
discuss initial estimates in a separate section to follow.

2.4 Initial Estimates

2.4.1 The Linear Case

In the case where the differential equations and boundary conditions are linear the MOL
equations can be solved in one step using Newton's or Powell's method whatever initial estimate is
made.

However the above statement must be viewed with some caution. Although it is true in
principle, in practice we clearly have to have an initial estimate which at least allows integration to the
end boundary x = a without the solution blowing up. In the authors' experience it is possible to take
quite crude estimates such as, at x = 0,

--
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- (2.15)

dx b

in the example of Section 3.5. Compare this to the exact solution

d4O coshiry

dx coshirb

The motivation behind the choice (2.15) was merely that it satisfied the boundary condition at y = b

evaluated at x = 0.

2.4.2 The Nonlinear Case

As has been pointed out it is desirable (and sometimes essential) to have a reasonably good
estimate in the nonlinear case. The authors have found that this limitation is not severe for two
reasons.

The first reason is that a nonlinear problem can often be made linear by a suitable choice ofa parameter in the problem. This linear problem can then be solved with a fairly crude estimate and

then the parameter can be varied in discrete steps. To obtain the solution at each value of the para-
meter a good initial estimate is available by extrapolation from previous results.

The second reason is that a parameter in the problem can often be chosen such that a
solution is already known at that value and estimates for each successive values of the parameter are

then obtained by extrapolation as above. An example of this is in first setting the angle of incidence
to be zero in the conical flow calculations of Section 4.3; this has the effect, for the circular cone, of
making the flow axisymmetric and solutions in this case are well known.

Note that such an extrapolation (the authors use quadratic extrapolation as soon as three
previous solutions are available) is not restricted by computer storage limitations as it may be in grid
techniques. This follows since we have only 0(N) unknowns to store rather than 0(N 2 ).

2.5 Termination Procedures

Good termination procedures for nonlinear problems are often difficult to find and some
attention should be paid to them. Clearly in the linear case one step is all that is needed and iteration
can then cease. Some of the subprograms written for Powell's method terminate when the next
change to Fj, SFj, is less than a certain amount say i8Fj3 <p for some small value of p. However in
some cases a better criterion might clearly be

Fj

There may be a problem in choosing p since too small a value may result in excessive computer time.

The authors have found it better to use a criterion which depends on the size of the residuals
of ej - either

1 N-I <

N 0

_adz
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or

maxleil<6

for example can be used. In the case of the conical flow calculations of Section 4.3 the choice ofresidual could be found from physical reasoning and was related to the mass flow into or from the

body relative to the total free stream mass flow being less than a certain amount.

A combination of the above criteria together with a preset maximum number of integrations
is normally employed.

2.6 Other Systems

In order to describe MOL a simple linear example was discussed. However, the procedure of
solution for other systems of equations is identical to that already described, particularly as we have
already covered Newton's and Powell's methods for solving nonlinear problems. The user may need to
use other finite difference formulas, for example for a first derivative we could write

a. = (xy+h) - %P(x,y-h) + 0(h2 1p"') (2.16)
ay 2h

Formulas (2.5) and (2.16), accurate to 0(h 2 ), which use values on 3 adjacent lines, may be
used in MOL applications. However a decided improvement can be obtained by using formulas
obtained from values on five adjacent lines. These formulas are

a~ Vi 4 i(x,y+h) - i(x,y-h)

ay 3 2h

- I4(xy+2h) - O(xy-2h) + 0(h 4 ov) (2.17a)

3 4h

and

32  
_ 4 4,(x,y+h) + O(x,y-h) - 24k(x,y)

ay 2  3 h2

_ 1 4(x,y+2h) + (x,y-2h) - 24k(x,y) + 0(h44W)

3 4h 2  (2.17b)

The advantages of using the five line schemes (2.17) in place of the three line schemes is
shown below. The next section then gives difference formulas of the same accuracy 0(h 4 ) as (2.17)
which can be used on the boundary or at the line adjacent to the boundary.

---------------------------------------.-
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Suppose E represents the exact derivative of a function 0 with respect to y and let A, and A2
represent the approximations given by Equations (2.16) and (2.17a) respectively. Then it can be
shown, by looking at the truncation errors, that

A , 6 y 2  
l k

e E 6

and that

A2  4y2 4
e2 = 1- 2 4 v

E 24

where Sy, and SY2 are the finite-difference increments. Now we want to find the ratio 6Y2 :5 Yi to give
the same accuracy in both formulas, i.e., el = e2 = e. For this condition we have

6 Y2 @i2
- - 0.90 (2.18)

The value of e'' Sy2 /Syl can be calculated from this formula for well-known functions. Its
value is approximately 0.90 for sin ny, cos ny and exp(ny), while for log y its value is 0.57. Hence
provided the approximate formula (2.18) holds, it can be seen that if e is, say 10 - 4 (0.01% accuracy),
then bY2 /byl lies between 6 for the log function and 9 for the sin, cos and exp functions.

The above analysis shows that 6-9 times as many dividing lines must be used with (2.16) to
get equivalent accuracy to (2.17a) for the first derivatives. Equation (2.16) requires about half as
many computer multiplications, divisions, etc., compared to (2.17a) but this affects only one state-
ment of the computer program and so is insignificant in terms of computer time. A similar saving in
lines may be made by using the 5-point scheme (2.17b) instead of (2.5) for second derivatives. The
superiority of the five line schemes over the three line schemes will be illustrated in Section 3.5.

2.7 Difference Formulas Applied Near a Boundary

To apply (2.17) on a line adjacent to a boundary line is not possible unless the boundary
line is a line of symmetry when image lines are used. If the boundary line is not a line of symmetry
then the following formulas are recommended.

(i) Dirichlet Boundary Condition

Use

oI, 1 3 1±hh - =  "' - 0) - -'(01' -02) +  " (1I-03)

ay 4 20 2) +2

1
- (01-04) + 0(hSov) (2.19)I
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for a first derivative, where lines 0, 1, 2, 3, 4 are adjacent and line 0 forms the boundary. The symbols
'0, 0 1, etc., refer to the values of on line 0, line 1, etc., and Ov refers to the fifth derivative of V/

with respect to y in the range considered. The upper sign is used if the lines 0, 1, 2, 3, 4 are at increas-
ing y values, otherwise the lower sign is used. For a second derivative

h2 a 2 01 1 1.75 1
- -4 2 -4 1 ) + T(¢,3-41 - (2 ay2  6 3 4

0.125 1.25
+--( 4-4) + + 0(h6 V) (2.20)

3 3

is recommended.

(ii) Neumann and Mixed Boundary Conditions

In this case ao/3y is a constant on the boundary or else ao/ay is given as a function of i.
In the latter case calculate a 0 0 /ay from the boundary condition and then, for both cases, use

a41 8.5 1 1 1 3 00!h- = ---(0 1 4.o) - _-I 1 - ) + h- - + O(h IV) (2.21)ay 9 2 18 3 ay

for a first derivative and

h 2 a 2 /1  3.5 1 0.0625
h43 2 1 - 3 1) + 6(4-1)2 a}y2 4

8.03125 0.625 a40+ --- h--i) +  h + 0(h 6 OVI) (2.22)
9 3 ay

for a second derivative. The appropriate ± sign is chosen in the same way as in (i) above.

Also the appropriate form for a2 00/ay 2 is given by

h2 a2 
0  a40 a0

= 4(01-00 T h--) - 1.5(02-;P0 T 2h- )ay 2  ya

4 -0 40 1 a0
+ -(0 3 14 F 3h-y)- -0 4 40 1 4h-)

9 16 16

6+ 0(h6 4w ) (2.23)
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In addition to first and second derivatives, formulas for higher derivatives may be found if
required. For example, in the case of the Neumann boundary condition, a 301/ay 3 can be determined
by solving the equations

0n+1 - 01 = nho,! +  - + 011 + 1
2 3! 4!

(nh)'
+ - ov (n = -1,1,2,3),

h ,111 h4  [V h5b 0=h I  I h2kl + 1 0W . 1' v + . V

ay2 3! 4 1

for 411 in terms of 00, 1, 02, /3, 0 4 and a3 0 /ay. Note that the required formula can be found
conveniently by computer matrix inversion.

2.8 Other Geometries

For simplicity we used a rectangle to describe MOL. The application to the geometry of
Figure 2.3 with polar co-ordinates is obvious; in this case lines b = constant are used.

FIG. 2.3 MOL WITH POLAR CO-ORDINATES
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Application of the method to more complicated geometries is generally limited only by the
degree of ingenuity of the user, since an appropriate choice of co-ordinates and various transformations
can be used to map most regions into one of the simple regions just mentioned. For example the
region ABCD of Figure 2.4 can be mapped into the rectangle 0 1, 0<-q 1 by the transformation

x-gl(y) Y-fl(x)

g2(y)-gl(y) f 2 (x)-f 1 (x)

B

A Y" f (z)

x -g, (y)

SX

FIG. 2.4 THE REGION ABCD

This transformation is now applied to the partial differential equations using, for example,

a a a .

ax = t + 17

ax a ?

a2  a a 2 a2  
2 a2  a2

and - = X -xx +  7Txx' - +  X 2 X + 2tx 7xatal a2  a ta 7nx a +

and then the resulting equations are solved by MOL in the (Qi) plane. Note that the transfor-
mation preserves linearity. Such a transformation is used to solve the conical flow problem of
Section 4.3.

ph
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2.9 A Cautionary Note on the Instability

The preceding description of MOL is somewhat idealized in the sense that we have assumed
that the computer round off errors, the discretisation error in the PMC integration scheme and also
the instability inherent in the ordinary differential equations are negligible. They of course are not
negligible; in fact it is known that MOL solutions are unstable since as more and more lines are used
the solutions diverge and thus become meaningless. This fact may deter people from using MOL and
one of our main purposes in this report is to show people that problems of physical interest have been
solved successfully by MOL. We also present an analysis of the instability in the linear case in the next
chapter. This analysis will show the form of the instability and thus the user will be made aware of
what problems to expect. Then the same linear problem that is analysed is solved numerically by
MOL. It will be seen that 4 or 5 significant figure accuracy is obtained.

Perhaps we should point out for the moment that MOL solutions may be compared to
asymptotic series solutions since the latter are divergent series so that as more and more terms are
taken the solutions become meaningless. However many useful results are obtained with asymptotic
series using only a few terms.

Also parallel shooting methods (Keller 1968) may be used to overcome the instability. In
these methods we subdivide the total range of integration 0<x<a into subintervals and 'shoot', for
example, as shown diagrammatically in Figure 2.5 below. Of course the number of unknowns is
increased in this case since we have to estimate values at x = 0, x = a/2 and x = a. In the linear case the
total computational time will be practically the same as using the one complete range since the number

acei

of unknowns is increased by a factor of four but each integration to get the derivatives- is over theaFj
range a/4. Of course the time involved in solving the linear system (2.10) or (2.13) would eventually
become large if many subintervals were used.

The parallel shooting method is used on our linear example in Section 3.5.2.

TXtI I lI I x
0 a/2 a

FIG. 2.5 PARALLEL SHOOTING RANGES
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CHAPTER 3.0 STABILITY AND CONVERGENCE OF MOL

3.1 Introduction

IIn the first part of this chapter Hadamard's example of the Cauchy problem for the Laplace
equation in a rectangle is discussed. This example shows that we may expect MOL to be inherently

" !unstable.

A closer analysis of MOL, using the scheme (2.4), for the Laplace equation in a rectangle is
then made. This analysis shows that the general solution by MOL is comprised of two parts. The first
of these is an unwanted solution which is negligible for sufficiently small x (the continuous variable) or

when sufficiently few lines are used but which otherwise grows large. The second part of the general
MOL solution is the required solution which tends to the exact solution as the y increment tends to
zero (i.e. as the number of lines increases).

In the final part the stability and convergence of MOL is illustrated with a linear example.
It will be seen that good accuracy (4 significant figures) is obtained with a suitable choice of both
number of lines and integration step size bx.

3.2 Hadamard's Example

Hadamard (1952) investigates the solution of Laplace's equation and shows that, subject to
Cauchy data of a certain type, the solution is not well behaved since it will oscillate between very large
positive and negative values when the correct solution, in the limit of vanishing Cauchy data, should be
zero. Hadamard poses the example

o +0 = 0 (3.1)

with Cauchy data given at the line x 0,

O(0,y) - 0,

A(,y) = A. sin ny, (3.2)

where n is large and A. is a function of n which grows small as n grows large (e.g., n- P, p > 0). The
solution to this problem is

Ob(x,y) = (An/n) sin ny sinh nx (3.3)

The sinh nx factor is large because of the growth of elx. The sin ny factor causes oscillation of the
function with varying y. Hence however close to zero we choose to make the Cauchy data (i.e., n large)
the solution 4(x,y) will not be zero but will oscillate between large positive and negative values. Since
zero is the solution of (3.1) with vanishing Cauchy data (An = 0) we conclude that for Laplace's
equation the dependence of the solution on the initial data is not in general continuous.

Garabedian (1964) concludes also that the above problem is not correctly set or well posed.
He defines a boundary-value problem for a partial differential equation, or for a system of partial
differential equations, to be correctly set in the sense of Hadamard if and only if its solution exists, is
unique, and depends continuously on the data assigned.

1'--,



.19-

Consider now Hadamard's example in the context of MOL. We may proceed with MOL by
estimating 0,( 0 ,y) and using this estimate integrate (3.1) numerically away from x = 0. After iteration
we arrive at a numerical solution of tx(0,y). Suppose the exact solution to the problem is zero, i.e.,

,(0,y) = 0, but that due to discretization and round-off errors the value of 4x(0,y) is of order 10 - ' ° .

Then the situation is similar to n being large in (3.2) in the sense that An is not quite zero. As we
integrate numerically in MOL away from x = 0 the solution will be in a form similar to (3.3) and will
thus become large and oscillatory for sufficiently large x. Thus we cannot obtain a good approximation
to the exact solution unless x is small.

ifnt It may also be noted that in the general case when solving by MOL even an exact Ox(O,y)
cannot ~ive a good solution for all x. The reason for this is that the x discretization error introduces
an unwanted solution equivalent to An t 0 in the Hadamard example. Thus the instability is always
present but its contribution may be insignificant for x sufficiently small.

The above observations of instability are analyzed more closely in the next part of this
chapter. It will be confirmed that a reasonably accurate solution may be obtained if x is sufficiently
small. It will also be shown that the instability is worse if too many lines are used.

3.3 Analysis of Stability of MOL

To illustrate the stability and convergence consider the problem of solving Laplace's
equation

+XX + yy- 0 (3.4)

in a rectangular domain 0 < x < 1, -b < y < b, with the following Dirichlet boundary conditions:

0(0,y) = (1,y) = 0, (3.5)

i(x,b) = 4(x,-b) = sin7rx (3.6)

The exact solution for this problem is known to be

cosh ry sin irx (3.7)
,(x,y) = cosh 7rb

We now consider the solution of this problem by MOL. Since the problem contains the two
lines of symmetry x = 'A and y = 0, we can reduce the region of interest to the upper left quadrant of
the rectangle, i.e. 0 < x < 'A, 0 < y < b. N - 1 interior lines are drawn parallel to the x axis with equal
spacing h = b/N, so that

Yn nh =nb/N (3.8)

The symmetry conditions

"10



-20-

Ox(A'y) = 0, (3.9)

O(x,-y) = O(xy), (3.10)

are applied.

To get some insight into the stability and convergence of MOL the three-point formula (2.5)
is used to approximate OYY in (3.4) giving

On + (On+-2 n + On -i ) /h2 = 0 (n = 0,1,2 ... N - 1) (3.11)

where .n(x) is the approximation for O(X,Yn) and the primes indicate differentiation with respect to x.
To the system (3.11) we add the appropriate i..Jundary and symmetry conditions,

0n(0) = 0, (3.12)

0' (/2) = 0, (3.13)

ON = sin rx, (3.14)

O-n(x) = O'n(x), n = 1,2,. . . , N - 1 (3.15)

3.3.1 Complementary Function

To obtain the complete solution of (3.1l)-(3.15) we first look for the complementary
function. This function must satisfy (3.11), (3.15) and also

ON = 0 (3.16)

We attempt a solution

On(x) = Cn e x

and substitute into (3.11) to give the recurrence relation

C, 1 - 2zC, + C,_1 =0 (3.17)

where

P2 h2

2

i_&
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For the complementary function to satisfy (3.15) requires C- C C1 and thus using (3.17) we obtain,
for C0 arbitrary,

C I1 = z-Co T, T(z)C0

C2 = 2zCj C0  (2z 2 -1)C 0 = T2 (z)C0

C3 =2ZC 2 -C, 2z(2z2 - 1)C0  zC0 =(4z' - 3z)C0  T3(z)CO

CN =TN(Z)CO (3.18)

where T.(z) is the Chebyshev polynomial of order n. Now to satisfy (3.16), since C0  0, we have

0 = TN(Z) = cos NO

where z =cosO. Thus 0 takes on discrete values given by Om where

NOm =-mrfor m =,3,.. .,2N- 1
2

Also

j~2 2m 2 i
zmM m 2in 2 =1 -

2~ M 2 4N

and so

I sm -* i (3.19)

Taking a linear combination of the allowable solution and using the fact that Tn(z) =cos nO
gives us the complete complementary function

2N-I nmr J MX JO( =X E cos -(Am e m  + B em) (3.20)
n m1,3 ... 2

for constants Am, m.
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3.3.2 Particular Integral

In this case we follow a similar procedure to that of finding the complementary function
except that we attempt a solution

On(W)= C, sin rx (3.21)

and obtain the recurrence relation

Cn+ 1 - 2zC n + Cn- 1 = 0

where z = 1 + r 2h2 /2. Thus we obtain the same relations (3.18), and since we now require 4 N = sin irx
we have

CN = TN(Z)CO = 1

or

-1

TN(Z)

On putting cosh 0 = z and using the fact that Tn(cosh 0) = cosh nO, the particular integral (3.21)
becomes

(n)(x =cosh nO
cosh n) sin rx (3.22)

nf~ cosh NO

where cosh 0 = 1 + ir2h2 /2.

The complete solution to our problem is then

O = 4p)(X) + 44C)(x)

3.3.3 Instability in the Method of Lines

Clearly the solution we require by MOL is the particular integral (3.22). The complementary

function (3.20), in order to satisfy the boundary conditions (3.12) and (3.13), requires Am = Bm = 0

for all m. However in Rolving the problem numerically it may be that, due to computer round off and

discretization errors in the numerical integration, the Am and Bm are not quite zero. In this case we

may expect a large growth of the unwanted solution Am eA mx in (3.20) since Pmx may grow rather

large. The size of the unwanted term and its form can be investigated by looking at the largest contri-

bution in (3.20). This is found by setting m = 2N - 1 since then

.........
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2 2 2N w
Am - sin (-- = Cos- = -Cos-h (2 ) h 4N b 4N

Thus, since N is normally greater than 3, pm -  2N/b and the unwanted growth in (nc)(x) is

1 1e2Nx/b
G 2NI=A 2N_1 cosnr - e2N/

The cosine factor is approximately unity in magnitude thus

IG2NII = A2N_1 exp -T) (3.23)

It can be seen that the gradient d/dx[o(4')(x)] will grow even more rapidly since this will be given by

ZG:Nl A2 N-1 2-Nexp 2Nx (3.24)

In our particular problem we really require 0'n( /) = 0 to give symmetry about x = 1h but it can be seen
from (3.24) that if A2N -1 is not quite zero and if the product Nx is sufficiently large then it would be
impossible to satisfy the symmetry condition.

Now due to the truncation errors of a finite word length machine the initial conditions at
x = 0 are not, in general, stored exactly. This would have the effect of Am and Bm being not quite
zero and so lead to the instability.

Also, even with an infinite word length machine, the discretization errors of the numerical

integration scheme will cause instability. This can be seen by considering the first step from x = 0 to
x = 6x using the exact conditions at x = 0 i.e. On(0) = 0 and On(0) = 7r cosh nO/cosh NO. We obtain a
numerical solution at x = Sx given by

On = On(exact) + En

0, = O'(exact) + 6n

where en, 6, are the errors due to numerical integration. Thus the Am and Bm now satisfy

I cos---(A m e m6 x + Bm e
- m 6x Cn

m 2Nm

Am cos" (Am e m6 - m e -m6X n

m
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so clearly Am and B, are not zero and we again have an instability problem.

We have thus shown that instability is unavoidable but we do not know how serious it is
until we attempt solutions to practical problems. Since we now know the form of the unstable term
(3.23) or (3.24) we can at least hope to minimize its effect.

For instance, since it is the product Nx which causes instability, it may in some cases be
worthwhile using smaller integration distances x. This leads to the idea of the parallel shooting
technique mentioned at the end of Chapter 2. Also using a higher (than second) order difference
scheme for the Pyy derivative enables us to use fewer lines (N) to achieve the same accuracy for this
second derivative. In turn by using N smaller we reduce the exponential growth in (3.23) or (3.24).
For example the fourth order accurate scheme using five adjacent lines could be used. This scheme
was considered in Section 2.6 and its numerical application is covered in Section 3.5.3.

Notice that although the instability is unavoidable it is no worse than other similar techniques,
used particularly in the Soviet Union, such as Telenin's method (see Gilinskii et al. (1964)) or the
Method of Integral Relations (MIR). Indeed it can be shown that the instability of MIR is likely to be
much worse than that of MOL. In Appendix A the MIR instability term similar to (3.24) is derived
and shown to be

A2N_ 1 exp 4- (3.25)

at x = '/2. The functions (3.24) and (3.25), without the A 2 Ns1 , are tabulated in Table I for x = 1/2 and
b = 0.475 (the value used in our example later). From this table it can be seen that instability of MIR
is significantly worse.

Even so MIR has been used successfully in the Soviet Union and also by Holt (1977) for
many years. In Chapter 5 of Holt's book application of MIR to several problems such as the supersonic
blunt body problem and the laminar boundary layer equations is explained.

3.4 Convergence of the Particular Integral

It is of interest to compare the particular integral (3.22) with the exact solution (3.7). This
is accomplished by expanding the inverse hyperbolic function in 0 = cosh-l1 (1 + r2h 2 /2) giving

[1 n 2h2  )
=irh -22 + O(h4

and then expanding the particular integral in a Taylor series about h = 0

cosh iy, r 7r3b3 IYn
4in(x) = sin inx + Itanh rb - - tanh iry + 0(N-4

cosh rb L 24N 2  b

Thus the particular integral converges to the exact solution (3.7) and has error 0(N-2). This error is

expected since we use a formula of 0(h 2 ) accuracy for the second derivative Oyy and h bIN
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3.5 A Linear Example to Illustrate the Stability and Convergence

In this section we solve numerically the problem posed in Section 3.3 and given by Equations
(3.4)-(3.6) using b = 0.475. The exact solution (3.7) is tabulated in Table II for values of x = 0.125,
0.25, 0.375, 0.5 and for values of y = 0, 0.475/3 and 2/3 X 0.475; also shown are values of Jx(X = 0)

i at the above y values.

We will use the three line difference scheme (2.5) in order to get a better understanding of
the stability since in this case we know the analytic MOL solution is given by (3.22). With the three
line scheme we will investigate the effects of parallel shooting, of varying the number of lines, and of
varying the integration step size 6x.

We will then use the five line scheme and show that accurate solutions can be obtained using
only a few lines.

3.5.1 The Three Line Analytical Solution

Let us consider the analytical solution to the MOL equations which is given by the particular
integral (3.22) of the ordinary differential Equations (3.11). This analytical solution represents the
best we can hope to achieve numerically since it does not contain any round off or discretization errors
and hence the complementary function (3.20) is zero. Remember that, numerically, we expect (3.20)
to be non zero and hence to cause some inaccuracy. The extent of the inaccuracy is what we want to
observe. Thus comparison of our numerical solution with the analytical MOL solution, rather than
with the exact solution (3.7), is more meaningful at this stage. The analytical MOL solution is given in
Table III at the same x and y values as listed for Table II; we present results for N = 3,6,9,12 and 15
(i.e. the number of lines used to divide the region 0 < y < b into strips).

3.5.2 The Three Line Numerical Scheme

This section is split into three parts which illustrate three different ways of overcoming the
instability.

The present results are obtained using the Runge Kutta Gill integration method which has
truncation error 0(6x 5 ). One step of the Newton iteration scheme (2.10) is used to find the missing
initial conditions. In the tables to follow we print values of 4 and the initial slopes 4'(x = 0) at the
(x,y) values mentioned in Section (3.5). We also print N (the number of lines), the integration step
size DELX, and the matching point XSHOOT used in the parallel shooting technique. If XSHOOT = 0.5
then only one shooting range is used and we print out the SUM SQUARES GRADIENTS which repre-
sents Zpj at x = 0.5 where pi = ai/ax; because of symmetry about x = 0.5 this quantity should be
zero. If XSHOOT 0.5 then two shooting ranges have been used as shown below.

(a) Effect of Varying the Length of Shooting (Parallel Shooting)

In order to help to overcome the instability we can use a parallel shooting technique as
shown diagrammatically below.

0 x (shoot) 0.5

We first estimaLePi(0), integrate the differential equations from 0 to x(shoot) and obtain
values Oi and p., say, on line i at x = x(shoot). Also using estimates of 4'i and pi at
x = x(shoot) (designated 4,s H and pSH say) we integrate the ordinary differential equations
to the end of the range x = 0.5 where we obtain values of pi = pi(O.5).

!I
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Be suitably choosing pi(O), O§H and pSH we hope to solve the system of equations

I }
pi (0.5) = 0 (symmetry about x = 0.5)

_SH = 0
0 matching at x = x(shoot)

pis - p1
s  = 0 (3.26)

The optimum choice of p-(0), OSH and pSH is made using Newton's method (2.10). Our
linear illustrative problem remains linear since the matching conditions at x = x(shoot) are
linear. Thus one step in the above method is all that is required.

Table IV shows the results of varying x(shoot) with N = 15 and Sx = 1/32. It can be seen
that instability is least when using the smallest shooting range (i.e. x(shoot) = 0.25). Shoot-
ing the whole range is clearly hopeless while using x(shoot) = 0.125 or 0.375 gives fairly
reasonable results. Using x(shoot) = 0.25 gives good stability and hence a solution accurate
to almost 4 figures compared to the analytic MOL solution given in Table III. The quantity
SUM SQUARES RESIDUALS printed in the tables represents the sum of sq uares of the left
hand sides of (3.26). The two entries given for x = x(shoot) list values of 0. (obtained after
integration from zero) and S (the best values of 4,(XSHOOT) to minimize'the RESIDUALS
of (3.26)).

(b) Effect of Varying the Integration Step Length Sx

It has been shown that the instability is caused by terms of the type exp(P2N- x). On
integrating numerically by the Runge Kutta Gill method we find that after k steps the term
exp(P2N l k 6x) is represented by Ek where

A2  A3  A4
E =1+ A + - + - .

2! 3! 4!

and A = P21-1 8x. Thus the error grows in the numerical integration like Ek rather than
exp(kA). E is always less than exp(kA) for A > 0 and the ratio Ek/exp(kA) shrinks rapidly
with increasing A. For example when 6x = 1/4 (i.e. k = 2 for integration over the whole
range) Ek/exp(kA) is about 10 - 4 for N = 12.

Thus we may expect instability to improve as Ax is increased (but of course the particular
integral would not be so accurately represented).

Table V shows the improvement in stability for N = 15 and x(shoot) = 0.5. We can see that
we progress from the unstable cases of 6x = 1/32 or 1/16 to a fairly stable solution with
6x = 1/8 and to a stable solution with 6x 1/4. Referring to accuracy the latter two
solutions are reasonably good except at the point x = 1/2, y = 2/3* 0.475.

(c) Effect of Varying the Number of Lines

It can be seen from Table VI that the effect of decreasing the number of lines improves
enormously the behaviour of the instability. The N = 15 solution is hopelessly unstable,
while using N = 12 gives a mildly unstable situation (the results are not accurate compared
to the analytical MOL solution of Table III). Using N = 9, 6 or 3 stability does not seem to
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be any problem and the accuracy of the solution is very good compared to the analytic MOL
solution (although not necessarily compared to the exact solution given in Table II).

To get good accuracy compared to the exact solution using the 3 line difference scheme we
would clearly have to use many lines (N = 57 would give 4 decimal figures accuracy) but
this, numerically, would give instability. Thus we clearly must use a higher order difference! scheme to represent the derivatives so that we can minimize the number of lines necessary to
achieve an accurate representation of the particular integral. This scheme is now investigated

-, numerically.

3.5.3 The Five Line Numerical Scheme

As we saw from the three line scheme applied to our linear example we can expect good
stability with N < 9 but the accuracy may not be sufficiently accurate. To keep the stability and also
get accuracy we consider the fourth order accurate scheme using (2.17b) to represent the derivative
Oyy (with (2.20) used next to the boundary line y = b). This time we only consider shooting the one
range 0 < x < 0.5 since sufficient accuracy and stability is obtained in this case (using N < 9).

Table VII lists values of 4 and the initial slopes 4,,(x = 0) for some values of N and 6x. It
can be seen, by comparing with Table II, that almost 4 significant figure accuracy is obtained using
N = 6 and 8x = 0.0625. Notice also that using the coarsest scheme, N = 3 and 6x = 0.25, produces
results with at worst 2% error in 4 and 1% error in the initial slopes. The N = 12 results again indicate
instability when Sx is too small.

In terms of computer time the method is very efficient as can be seen from the N = 6,
6x = 0.0625 solution. This required only 0.3 seconds on an IBM 3032 computer. The efficiency is
confirmed by further computer times quoted in the nonlinear examples covered in the next chapter.

3.6 Summary

The three line scheme (2.5) to represent the derivative has been used mainly to illustrate the
instability inherent in the method of lines. It has been confirmed that three techniques help to over-
come the instability but the latter two decrease the accuracy of the particular integral which we seek
to obtain. It has been shown that, for our linear example, the higher order difference scheme using
five adjacent lines (2.17) gives an accurate representation of the particular integral while at the same
time giving a stable solution. Thus use of the five line scheme is always recommended.

Notice also that three line schemes of order (N- 4 ) accuracy in the particular integral may be
used in certain cases. These schemes are given in Appendix B; they require calculating the derivatives
pi in the ordinary differential equations by solution of a tridiagonal system of equations. This can be
achieved efficiently by the Thomas algorithm (von Rosenburg, 1969).

REFERENCES FOR CHAPTER 3

Garabedian, P.R. Partial Differential Equations.
John Wiley, New York, 1964, pp. 108-109.

Gilinskii, S.M. Izv. Akad. Nauk. SSSR, Mekh i Mash. No. 4, 1964, pp. 9-28.
Telenin, G.F. (Translated as NASA TT-F297).
Tinyakov, G.P.

Hadamard, J. Lectures on Cauchy's Problem in Linear Partial Differential
Equations.
Dover, New York, 1952, pp. 33-34.

Holt, M. Numerical Methods in Fluid Dynamics.
Springer Verlag, 1977.



-28-

von Rosenburg, D.U. Methods for the Numerical Solution of Partial Differential
Equations.
Elsevier, New York, 1969.



- 29 -

TABLE I

TABLE OF THE FUNCTIONS (3.24) AND (3.25) USING b =0.475

TO ILLUSTRATE THE INSTABILITY OF MOL AND OF THE

METHOD OF INTEGRAL RELATIONS FOR N TOO LARGE

N (3.24) (3.25)

2 5.7,2 4.5,4 (-= 4.5 X 104)

3 7.0,83 3.0, 10

4 7.6,4 4.2,18

5 7.8,5 1.3,29
6 7.7,6 8.1,41

9 6.4,9 >loll

12 4.7, 12 >loll

TABLE II

EXACT SOLUTION TO MOL LINEAR PROBLEM

X Y = 0 0.475/3 2*0.475(3

0.125 0.1638 0.1845 0.2518

0.250 0.3027 0.3409 0.4653

0.37 5 0.3955 0.4454 0.6079
0.500 0.4281 0.4821 0.6580

INITIAL SLOPES 1.3449 1.5147 2.067 1

S __ ___ ____ ___ ____ ___ ____ ___ ___KAM_
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TABLE III

ANALYTICAL MOL SOLUTIONS GIVEN BY 3.22

N=3

X Y = 0 0.475/3 2*0.475/3

0.125 0.1660 0.1866 0.2533
0.250 0.3068 0.3448 0.4680
0.375 0.4009 0.4505 0.6115
0.500 0.4339 0.4876 0.6619

INITIAL SLOPES 1.3632 1.5318 2.0794

N=6

X Y = 0 0.475/3 2*0.475/3

0.125 0.1644 0.1850 0.2522
0.250 0.3037 0.3419 0.4660
0.375 0.3969 0.4467 0.6088
0.500 0.4296 0.4835 0.6590

INITIAL SLOPES 1.3495 1.5190 2.0702

N=9

X Y = 0 0.475/3 2*0.475/3

0.125 0.1641 0.1847 0.2520
0.250 0.3032 0.3414 0.4656
0.375 0.3961 0.4460 0.6083
0.500 0.4287 0.4828 0.6584

INITIAL SLOPES 1.3469 1.5166 2.0685

N = 12

X Y f 0 0.475/3 2*0.475/3

0.125 0.1640 0.1846 0.2519
0.250 0.3030 0.3412 0.4654
0.375 0.3958 0.4458 0.6081
0.500 0.4285 0.4825 0.6582

INITIAL SLOPES 1.3460 1.5158 2.0679

N = 15

X Y = 0 0.475/3 2*0.475/3

0.125 0.1639 0.1846 0.2519
0.250 0.3029 0.3411 0.4654
0.375 0.3957 0.4456 0.6080
0.500 0.4283 0.4824 0.6581

INITIAL SLOPES 1.3456 1.5154 2.0676

-I
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TABLE IV

EFFECT OF VARYING X(SHOOT)

N = 15 DELX = 0.03125 XSHOOT = 0.125

X Y = 0 0.475/3 2*0.475/3

0.125 0.1635 0.1840 0.2511
0.125 0.1635 0.1840 0.2511
0.250 0.3023 0.3401 0.4630
0.375 0.3955 0.4452 0.6015
0.500 0.4284 0.4833 0.6315

INITIAL SLOPES 1.3422 1.5108 2.0623

SUM SQUARES RESIDUALS 6.885D 02

N 25 DELX =0.03125 XSHOOT = 0.250

X Y = 0 0.475/3 2*0.475/3

0.125 0.1639 0.1846 0.2519
0.250 0.3029 0.3411 0.4654
0.250 0.3029 0.3411 0.4654
0.375 0.3958 0.4457 0.6081
0.500 0.4284 0.4824 0.6582

INITIAL SLOPES 1.3457 1.5155 2.0677

SUM SQUARES RESIDUALS 1.609D-04

N = 25 DELX = 0.03125 XSHOOT = 0.375

X Y = 0 0.475/3 2*0.475/3

0.125 0.1657 0.1860 0.2526
0.250 0.3072 0.3441 0.4667
0.375 0.4028 0.4701 0.6643
0.375 0.4075 0.4500 0.6099
0.500 0.4354 0.4870 0.6601

INITIAL SLOPES 1.3595 1.5265 2.0732

SUM SQUARES RESIDUALS 6.799D 01

N = 15 DELX = 0.03125 XSHOOT = 0.500

X Y = 0 0.475/3 2*0.475/3

0.125 0.0363 0.0805 0.1980
0.250 0.0129 0.1170 0.3574
0.375 -0.1656 0.0768 0.4544
0.500 0.6212 -8.3976 -1.2045

INITIAL SLOPES 0.3648 0.7049 1.6394

SUM SQUARES GRADIENTS 1.050D 06

4
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TABLE V

EFFECT OF VARYING 6x

N =15 DELX =0.06250 XSHOOT 0.500

X Y = 0 0.47 5/3 2*0.475/3

0.125 0.1583 0.1812 0.2510
0.250 0.2873 0.3347 0.4649
0.375 0.3473 0.4450 0.6011
0.500 0.5551 1.0065 0.0971

INITIAL SLOPES 1.3044 1.4881 2.0591

SUM SQUARES GRADIENTS 3.905D 03

N =15 DELX =0.12500 XSHOOT =0.500

X Y= 0 0.475/3 2*0.475/3

0.125 0.1636 0.1843 0.2516
0.250 0.3022 0.3406 0.4652
0.375 0.3944 0.4448 0.6249
0.500 0.4260 0.4838 7.1353

INITIAL SLOPES 1.3435 1.5136 2.0653

SUM SQUARES GRADIENTS 8.146D-02

N = 15 DELX = 0.25000 XSHOOT = 0.500

X Y = 0 J 0.475/3 2*0.475/3

0.250 0.3035 0.3413 0.4638
0.500 0.4302 0.4874 j 0.7246

INITIAL SLOPES 1.3500 J1.5165 2.0533

SUM SQUARES GRADIENTS 7.961D-07

~ ~.*WA



- 33-

TABLE VI

EFFECT OF VARYING THE NUMBER OF LINES

N =15 DELX 0.03125 XSHOOT = 0.500

X Y = 0 0.475/3 2*0.475/3

0.125 0.0363 0.0805 0.1980
0.250 0.0129 0.1170 0.3574
0.375 -0.1656 0.0768 0.4544
0.500 0.6212 -8.3976 -1.2045INITIAL SLOPES 0.3648 0.7049 1.6394

SUM SQUARES GRADIENTS 1.050D 06

N = 12 DELX = 0.03125 XSHOOT = 0.500

X Y 0 0.475/3 2*0.475/3

0.125 0.1612 0.1824 0.2507
0.250 0.2967 0.3363 0.4631
0.375 0.3836 0.4381 0.6047
0.500 0.3944 0.5251 0.6659

INITIAL SLOPES 1.3249 1.4983 2.0586

SUM SQUARES GRADIENTS 2.130D 01

N = 9 DELX = 0.03125 XSHOOT = 0.500

x y= 0 0.47513 2*0.47513

0.125 0.1641 0.1848 0.2520
0.250 0.3032 0.3414 0.4656
0.375 0.3962 0.4460 0.6083
0.500 0.4289 0.4826 0.6585

INITIAL SLOPES 1.3470 1.5167 2.0685

SUM SQUARES GRADIENTS 2.326D-04

N = 6 DELX = 0.03125 XSHOOT = 0.500

X Y 0 0.475/3 2*0.475/3

0.125 0.1644 0.1850 0.2522
0.250 0.3037 0.3419 0.4660
0.375 0.3969 0.4467 0.6088
0.500 0.4296 0.4835 0.6590

INITIAL SLOPES 1.3495 1.5190 2.0702

SUM SQUARES GRADIENTS 3.526D-09

N = 3 DELX = 0.03125 XSHOOT = 0.500

X y = 0 0.475/3 2*0.475/3

0.125 0.1660 0.1866 0.2533
0.250 0.3068 0.3448 0.4680
0.375 0.4009 0.4505 0.6115
0.500 0.4339 0.4876 0.6619

INITIAL SLOPES 1.3632 1.5318 2.0794

SUM SQUARES GRADIENTS 1.841D-16
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CHAPTER 4.0 TWO NONLINEAR EXAMPLES

4.1 Introduction

The linear problem covered in the last chapter was relatively easy to solve since only one
step in the Newton scheme was required tc obtain a solution. In nonlinear cases we have to be much
more careful about initial estimates and we must be sure of using an efficient numerical optimisation
scheme in order to find the optimum unknown values. It is believed that the method due to Powell
(1965) is one of the most efficient methods (see Section 2.3 for a further coverage of Powell's method)
for minimizing a sum of squares of nonlinear functions and as such is used in most of our computations
presented here, the exception being the delta wing computations of Klunker et al. (1971) who used
the modified Newton scheme mentioned in Section 2.2.2.

The first example is a structural problem and as such has been solved by the finite element
method (Dixon 1971); MOL results are compared with the finite element solution.

The second example is a conical flow problem encountered in aerodynamics. We solve the
full Euler equations comprising five simultaneous partial differential equations and also determine the
location of the shock wave attached to the cone apex (see Fig. 4.3). A finite difference solution of the
elliptic equations would be very time consuming and the earlier methods of solving this problem con-
sidered the complete hyperbolic system using the cone axis as the time-like direction. Comparisons of
the MOL solution to the hyperbolic marching method (Babenko 1966; Gonidou 1968) are made. It is
found that MOL solutions are some fifty times quicker while obtaining results of equal accuracy. The
MOL results for a circular cone have been tabulated in AGARDograph 137 (Jones 1969) and have
served as standard reference tables for inviscid flow about circular cones.

Finally some results are shown from MOL solutions for flow about the compression side of

a delta wing at incidence to a supersonic stream. Again a comparison is made with a hyperbolic march-
ing method.

Other nonlinear examples are discussed in Jones, South and Klunker (1972).

4.2 The Simply Supported Square Plate

For this example we use the following notation

C constant = tE/(1- 2 )

D flexural rigidity, Et 3 /12 (1-P 2 )
E modulus of elasticity, = 2 X 1010

t plate thickness, = 0.002

N number of strips used. h = ' /N

p Ux

q V X
Q normal pressure. Varies from 0 to 80

r W

s =a
u,v mid plane displacements in x and y directions
w transverse displacement

a substituted for wxx + W

6x step length used for integrating the MOL ordinary differential equations

h strip width in y direction
v Poisson's ratio, = 0.3

............ ...........
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The example is a structural problem which is defined mathematically by a set of rather
complicated nonlinear partial differential equations. These are

uXX + WX w, X + v + WY WXY) + '1/(1-v)

"(Uyy + vxy + w x Wyy + Wy Wxy) = 0 (4.1a)

Vyy + Wy Wyy + V(Uy + W x WXY) + /(1-v)

•(Vxx + Uxy + wy wXX + w X wxY) = 0 (4.1b)

DV4w Q + -E [u x + /2w2 + V(vy + W/2w)]1-V 2  Y

W + [V + 1/2W +v(u x + W2)1 Wy

+ (l-,) (Uy + vx + w× Wy) W (4.1c)

subject to boundary conditions on the simply supported square plate o < x < 1, o < y < 1

x o: u= v =w =wXX= o (4.2a)

y o: u v = w W o (4.2b)

with lines of symmetry x = /2, y =/.

To use MOL, Equations (4.1) are written as differential equations of first order in x which is
the variable to be left continuous. We also for convenience, introduce a variable a = V2w (hence, on
the boundaries, a = o), and suitably scale the dependent variables U = Cu, 7 = Cv, W c'/'w, N = C'/za.
Then, dropping the bar notation, the Equations (4.1) can be written as the system of equations

u x = p (4.3a)

vx = q (4.3b)

wx = r (4.3c)
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ax = s (4.3d)

rX = a -Wyy (4.3e)

Px = - Irr× + v(qy + Wyry) + (1-v)

•(uyy + qy + r wyy + Wy ry)] (4.3f)

qx - 2(1-v) - tvyy + wy Wyy + v(py + r ry)] - py - Wyr x - ryry (4.3g)

Ds X =-Dayy + CQ + [p + 1r 2 + v(v + 1/2w)]rx

+ {vy + V2w2 + v(p + hr 2 )1Wyy + (W-v)[Uy + q + rwy]ry (4.3h)

Now Equations (4.3) are to be satisfied on each dividing line (except at y = o) which are
numbered 0,1,2... N say corresponding to increasing y. Thus yo = 0, YN = /2 and the strip width
h = 1/2N. Symmetry on y = 1A can be conserved by introducing image lines at /2 + h and 1/2 + 2h and
these lines are numbered N + 1 and N + 2. Then for symmetry

VN+k = - VN- k

qN+k f - qN-k

for k 1,2 while for the other dependent variables the equality holds (e.g. WN+k = WN-k).

The partial derivatives with respect to y occurring in Equations (4.3) are replaced by the five
line difference formulas (2.17) for i = 2,3... N, while on line 1 we use formulas (2.19) and (2.20).

Now we can apply MOL by estimating p,q,r and s at each line i at x = o. These estimates are
made by first obtaining a solution with Q near zero since at Q = 0 we know p q = r = s = o. We then
increase Q gradually and obtain initial estimates of p,qr and s at x = o by extrapolation from previous
solutions; in our case quadratic extrapolation was used as soon as possible. We then improve the
estimates using Powell's method in order that

r2 + q 2 + u2 + S2 (4.4)

at each line at x = h is minimized. The latter must be minimized since we require

r = q = u s =o
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at x = 1/2 to preserve symmetry there. In the practical computation it turned out that weighting factors

had to be applied in (4.4) so that each term was roughly of the same order.

The integration method used was Hamming's (1959) predictor modifier corrector scheme of
O(x)accuracy. Starting with N = 3 various step lengths 6ix were used i.e. 6x = 1/2/m where m = 3,4,5,

6,7,8,10. This procedure indicated the step length 6x needed to give sufficient accuracy. It was found

that 6x =1/20 was sufficiently small since these results differed only a little from 6x = 1/16.

We then used N = 4 lines (6x = 1/20) and compared the results with N = 3 for Q =32. Some(I quantities were not sufficiently accurate, e.g. wyy, so we next used N = 5 and again compared results at
Q=32. Some of these comparisons are shown in Figures 4.1. It was found that, with N = 5, solutionsI

were rather difficult to obtain for Q > 32; this was due to the instability becoming more significant as

the nonlinearity of the problem increased (parallel shooting (Section 2.9) would have to be used to
obtain solutions with higher Q). However using the one shooting range we obtained satisfactory results

with N = 3 or 4. Solutions at Q = 80 are compared in Figures 4.2 with a 9 element finite element
solution of Dixon (1971). It is seen that good agreement is obtained.

The time taken for the MOL solutions for some 40 values of Q between 0 and 80 was as
follows

'1N =3, Sx - . 2.5 mins.

N =4, 6x 2 3.5 mins.

on an IBM 3032 computer.

4.3 Conical Flow Problems

The method of lines seems to be ideally suited to problems of this type since it is not clear

how one would solve the elliptic system by finite difference methods. The previous finite difference
methods (e.g. Babenko 1966) solved the hyperbolic system of equations by a marching technique using

the cone axis z (see Fig. 4.3) as the time-like direction. But these marching methods were rather slow,

for example, Gonidou (1969) reported one hour computation for a certain configuration and, as many

solutions for different configurations were required, it seemed that a more efficient computational
technique was needed. MOL turned out to be very efficient with between 5 and 20 seconds needed for

a solution. For flows about circular cones a set of tables of MOL results has been published by Jones

(1969); results for some 1200 configurations are listed there.

The physical problem is shown in Figure 4.3. In supersonic flow there is a shock wave

attached to the tip of the conical body and the flow field behind the shock is such that quantities
along any ray emanating from the tip are constant. We wish to find the shock wave shape and the flow

field variables between the conical body in supersonic flow and its attached shock wave. A cylindrical

co-ordinate system (z,r,O) is adopted with the z axis along the axis of the conical body (which may for

example be a circular cone).

The equation of the given body can be written in the form, r = zG(O) say, and we let the

equation of the unknown attached shock wave be r = zF(9). The full three-dimensional equations of

motion (momentum, continuity and energy conservation) can be written in matrix form as

A'LX+ B'aX +C' a + D 0,(4.5)
az ar DO
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where A'B'C' are (5 X 5) matrices, D' is a column vector and X is also a column vector given by

4 Q)

where u,v,w are the velocity components in the (z,rO) directions, respectively, p is the pressure and p
the density. The matrices and the vector D' consist of elements which are functions of u,v,w,p, and p;
their exact form can be found in Jones (1968). A cross section (z = const) of the flow field is shown
in Figure 4.4a; here the flow and body are assumed to be symmetrical about 0 = 0, 7r as is usually the
case. The boundary conditions to be satisfied are the Rankine-Hugoniot relations at the shock wave
which can be written in the form

X = f(ct,yM_,,0,F,F'), (4.6)

where f is a column vector whose elements are functions of the listed arguments. The first three
arguments in (4.6) are a the angle of incidence which is the angle that the directior of the free stream
makes with the z axis, y the ratio of specific heats and M. the free-stream Mach number. Since these
three arguments are known for a given problem it follows that the elements of X are known at the
shock once the equation of the shock r = zF(0) is known. F' is found from (2.17a).

On the body the normal velocity should be zero and can be written

uG - v + (1/G)(dG/dO)w = 0. (4.7)

Now it is known that the equations of motion (4.5) can be reduced to two dimensions since
the flow is conical. A suitable transformation to do this and also one which makes the boundaries
easier to handle is given by

x Z,

= [r - zG(0)]/z[F(O) - G(0)1,

=0.

It is now seen that the body r = zG(0) and shock wave r = zF(0) are transformed to the lines 0 and
= 1, respectively, see Figure 4.4b. The equations of motion (4.5) are transformed to

B(MX/at) + C(QaX/ao) + D = 0, (4.8)

where B,C are (5 X 5) matrices and D is a column vector. The term ax/ax is omitted from the above
equation since the flow is conical and aX/ax is zero. Now we can consider the equations at unit
distance x z = 1. Hence the problem is reduced to that of finding solutions of (4.8) in the region

-- ,-
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0 < t 1, 0 < 0 < r (assuming symmetry) subject to boundary conditions (4.6) at 1 and (4.7) at
=0.

The method of lines is applied in the Q,0) plane; symmetry conditions at 0 0 and at 0 =

are satisfied by introducing image lines in the usual manner. An estimate for F(0) at each of the lines
is made, F'(0) is obtained from (2.17a) and substitution in (4.6) gives X(Q = 1). Equations (4.8) are
next reduced to ordinary differential equations by writing 3iX/ao at each line in the finite-difference
form (2.17a). Integration of these ordinary differential equations is then made from t = 1 to t = 0
where Equation (4.7) must be satisfied at each dividing line. The shock shape, i.e., F(0) is changed by
Powell's method so that conditions (4.7) are satisfied to a required accuracy. It was found convenientI in this example to represent F(0) by a cosine Fourier series ~I!, F. cos io, say, where m is 1 or 2 forthe~~~ cicua con at smlnlso niec;b hsrpeetto h ubro nnwsitredudand son t workl involedo incfindingeb ths rtialederiatieon (2.11 isbe reduedoand alsPwl'

method is more efficient.

It is important in this example to have a good estimate of the shock shape F(O). To be
* always sure of a good estimate, a situation is first considered for that of a circular cone r =G(0) = const

which is at incidence a = 0 deg. For this case the flow is axisymmetric and the problem is easily solved.
A situation is next considered which has a small perturbation from the circular cone at zero incidence
[either a small change to the body shape G(0) or a small change in incidence may be considered)I. In
this case the estimate for F(o) is taken to be that obtained for the first case of the circular cone at zero
incidence. The solution for this small perturbation is then found by the method of lines. Next a larger
perturbation of body shape or incidence, which is proportional to the first perturbation, is considered
and F(o) is estimated by extrapolation from the two previous results. And so the technique can be
continued for larger proportional perturbations and always a good estimate for F(0) is available by
extrapolation from previous results at the smaller perturbations. For example, to find solutions at
incidence for the circular cone whose semni-apex angle is Oct a solution is first found for a = 0 deg., then
successively for a/0, = 0.01, 0.1, 0.2, 0.3,. ..

By the method of lines it was possible to generate solutions for the circular cone for relative
incidence ce/Ow as high as 1.4 in some cases, which was higher than relative incidences at which any
other theoretical solutions were available. The only other methods available which gave solutions at
relative incidences greater than unity (up to about 1.2) are methods which solved the full hyperbolic
Equations (4.5) [Babenko 1966, Gonidou 1968] and these methods are 50-100 times less efficient
than the method of lines.

The quality of the results for a circular cone can be seen in Table VIII which compares
surface values and shock shape F(o) on a circular cone obtained by MOL with 50k 22.50 and 6t = 0.1
and by the method of Babenko et al. (1966) with 60 = 11.25 and 5t = 0.05, which solves the full
hyperbolic Equations (4.5).

Results for a non circular cone are shown in Figure 4.5a and are compared with experimen-
tal results. The cross section of the body in this case is shown in Figure 4.5b.

Finally a surface pressure result of Klunker et al. (1971) for the delta wing problem
(compression side) is given in Figure 4.6. In this problem, the cross section of the wing is flat, and the
shock wave is attached not only at the wing apex, but also along the leading edges which are swept
back 50'. The total velocity is everywhere supersonic, but in this problem the conical cross flow is
also supersonic in a region adjacent to the leading edge (Ki = 1 on Fig. 4.6). It is interesting that MOL
can be used without difficulty in this case, even though the conical equations are of mixed type; MOL
gives an excellent prediction of the constant pressure which occurs in the hyperbolic region (for the
flat wing) as well as in the elliptic region near the wing center line (K = 0 on Fig. 4.6), where the cross flow is
conically subsonic. In Figure 4.6 the MOL results are compared with those of Voskresenskii (1968), who
used the three-dimensional, fully hyperbolic, finite-difference method. It can be seen that the two methods
agree well, and that remarkable accuracy is obtained by MOL with only one intermediate line between the
wing center line and leading edge (i.e., N = 2). Further MOL results for delta wing problems are given
in Klunker et al. (1971), including comparisons with experiment and other calculative methods.
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It may be noted in Figure 4.6 that Klunker et al. in applying MOL to the delta wing

problem, did not use constant strip widths but took more lines in the region where there is more

variation in quantities, i.e., near Y = 0 in Figure 4.6. This is possible in their case since they approxi-

mate derivatives by fitting a fourth-order polynomial to five adjacent points near to the point at which

the derivative is required.
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TABLE VIII

COMPARISONS OF SURFACE VALUES AND SHOCK SHAPE BETWEEN PRESENT

THEORY AND THE THEORY OF BABENKO ET AL. (1966) FOR CIRCULAR CONE

M_ =5, 06 =25, oe = 20

0 22.5 45 67.5 90 112.5 135 157.5 180

Uj 1.3028 1.3167 1.3571 1.4205 1.5026 1.5956 1.6906 1.7741 1.8123

UB 1.3026 1.3165 1.3572 1.4217 1.5048 1.5989 1.6936 1.7711 1.8129

Vj 0.6075 0.6140 0.6328 0.6624 0.7007 0.7440 0.7883 0.8273 0.8451

VB 0.6074 0.6139 0.6329 0.6630 0.7017 0.7456 0.7897 0.8259 0.8454

wi 0 0.1785 0.3464 0.4862 0.5890 0.6358 0.6205 0.4319 0

WB 0 0.1792 0.3446 0.4832 0.5818 0.6285 0.6075 0.4463 0

Pi 2.6838 2.5058 2.0418 1.4619 0.9277 0.5447 0.3172 0.2426 0.2522

PB 2.6842 2.5062 2.0423 1.4596 0.9282 0.5434 0.3182 0.2436 0.2508

pi 4.7758 4.5474 3.9284 3.0946 2.2362 1.5288 1.0391 0.8580 0.8819

PB 4.7759 4.5475 3.9289 3.0909 2.2368 1.5260 1.0411 0.8603 0.8785

Fj 0.5919 0.5943 0.6029 0.6168 0.6395 0.6657 0.6960 0.7075 0.6920

FB 0.5920 0.5947 0.6028 0.6173 0.6388 0.6665 0.6949 0.7068 0.6917

Subscripts: J Values obtained by present method

B Values obtained by Babenko et al. (1966)
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CHAPTER 5.0 ELLIPTIC EIGENVALUE PROBLEMS

5.1 Introduction

Although the main advantage of the method of lines has been in solving boundary value
problems, particularly the rather complicated nonlinear types mentioned in Chapter 4, we feel that for
completeness some coverage should be given to eigenvalue problems. Thus in this chapter we consider
the method of lines solution to Helmholtz equation in a rectangle and compare MOL results to the
exact solution.

The instability problems mentioned earlier (Section 3.3) are again encountered in the
eigenvalue case. However it is illustrated that accurate results can be obtained for the smaller eigen-
values using the usual five line difference scheme (2.17). We first consider the three line scheme as this
gives better insight into the stability and rccuracy expected.

The problem considered here has a linear operator but nonlinear operators would be handled
in a similar manner.

5.2 The Method of Lines Applied to Eigenvalue Problems

Consider Helmholtz' equation in a rectangle o < x < a, o < y < b. Lines are drawn parallel
to the x axis and numbered 0, 1...... N. Because of symmetry we consider only the region
o < x < a/2, o < y < b/2. Lines o, N correspond to y = 0 and y = b/2 respectively. Writing h = b/2N
and replacing a2 O/ay 2 on the nth line by the three line finite difference scheme (2.5), for example, we
have

dPn On~l - 20n + On-I
- + + k2 0', = 0 (5.1a)
dx h2

where

d~n
dx= Pn n =1,2 . .. N -(5.1b)
dx

We apply symmetry at y = b/2 by making ON+l = O 1. The initial conditions at x = 0 are

On = 0 n = 1,2 ... N

We can integrate (5.1) from x = 0 to x = a/2 provided we have values for k and for the
gradients Pn for n = 2,3... N. The gradient p, is kept fixed throughout since we want to avoid the
trivial solution 0 = 0. Note that this fixing of a gradient t 0 may prevent finding the eigenvalue
corresponding to an eigenvector which has zero gradient at that point. For example if we fixed
PN -I t 0 when N = 3 then we could not calculate the eigenvalue corresponding to

mirx 3lry

0 = A sin - sin-3-r
a b
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since

d n(x = 0) mr 37rYn Am" 31r(N - 1)h
A A-sin - = - sinr= 0

dx a b a Nh

when N = 3. By increasing N to 4,5 ..... though, we could calculate the eigenvalue. Choosing p, 0
for this particular problem does not lead to any eigenvalue loss.

Since the problem is linear for a fixed k we proceed as follows. Fix k in an outer loop. In

the inner loop calculate P2 .... PN so that the sum of squares of residuals r[2 Z at x = a/2

is minimized. The generalized least squares minimization leads to

N N ark ark N ark
E ~ ~ ~ = - rk i =2...N(52

* j=2 k=IaFj aFj k=l aFj 52

where Fj - p (x = 0) and bFj is the change to be made in Fi so that Zr3 is minimized. Since rk is linear
with respect to (F 2 .... FN), (5.2) is exact and the partial derivatives can be found exactly (within
round off errors) by differences

ark YkF 2 .. ,Fi .... F N ) - Yk(F2 .... Fi.... FN)
= AFi  (5.3)

where AF i is theoretically any value but the authors usually select 10- 6 Fi if Fi  0 since a large dis-
turbance to Fi may prevent integration to x = a/2 to find rk. Also if the operator is non linear then
(5.3) is a good approximation only if AFj is small. The first estimate of (Fi) is not too critical since
the above method theoretically yields the exact minimum in the inner loop. However we have to
select values which enable us to integrate to x = a/2 without the solution blowing up. In the example
of this chapter we consistently set F, = F 2 =.... FN = 1 at the start of the inner loop, used
AFj = 10- Fi, and did not encounter any difficulties. F, was then kept fixed on 1 and integrations
made using the small perturbations to F2 .... F N in turn. Having found the partial derivatives accord-
ing to (5.3) we then substitute into (5.2) and by Gaussian elimination find 5Fi.

In the outer, k, loop we can either select values for k2 in some consistent manner,

k2 = c(d)e (5.4)

say, or we can carry out a one dimensional minimization. The method used by the authors is a com-
bination of both these possibilities. First c and e are selected (for example we chose c = 0, e = 65 in
the square membrane problem to follow) and the step d is selected in a manner depending on the
problem at hand (for the square membrane we chose d = 1 since we knew there were many roots
expected in the range o < k2 < 65). For a particular N we then plot R (= (Er?)") against k . The
function R will have a cusp at each root (Fig. 5.1 for example) thus giving approximations k2, k2
to the eigenvalues. We may then, if required, calculate the roots more accurately by minimizing Ir
with respect to X where X is given by

'- - .. .. ..... ..... ... . .:1 '.
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k2 an .(k 2 + k) + (k 2 - k2 ) sin X (5.5)
I 1 0 I io

and k2 is the ith eigenvalue. k 2 and k 2 are lower and upper limits on k2 chosen from the graphical'1 iiinspection above. The authors preferred this semi-automatic method but a completely automated

jI method could be devised in which the computer would locate each root approximately and then refine
the approximation.

If we suspect the presence of multiple roots which numerically are roots which may be very
close but not coincident we can then minimize

2rj /(k;- - ki) (5.6
.J 3 IA' (5.6)

in the ranges k 2 <k 2 <kand k2<k Q < k- where k 2 is the eigenvalue already found. Triple roots

in th ragsk,, I A an IA I ii IAcan be found in a similar manner.

The method has been described above using a three point approximation to the derivative
Oyy. But in order to use as few lines as possible it is better to use finite difference approximations
having greater accuracy. Application in this case is exactly the same as outlined above.

We next apply the method to a square membrane using the three point scheme (for which an
analytical solution is available) and then use a five point scheme for which a semi-analytical solution is

available.

5.3 Helmholtz' Equation in a Square

To investigate the accuracy, stability and convergence of MOL we consider a simple example
with a known solution and solve the MOL ordinary differential equations first analytically and later
numerically.

5.3.1 The Three Line Scheme

We consider a square of side 7r in which we want to solve (V 2 + k2 )4 = 0 subject to 0 = 0
on the boundary. The MOL representation of Helmholtz' equation using the three line scheme can be
written

4n + + - + + k2 n = 0 (n = 1,2 ... N) (5.7)

h2

where h = ir/2N and lines are considered parallel to the x axis. Lines o, N are equivalent to y = 0 and
y =r/2 respectively. The primes denote differentiation with respect to x. We consider only the region
o < x < r/2, o < y < 7r/2 because of symmetry (or antisymmetry).

The boundary conditions are

AL, x = 0: On = 0 (n 1,2...N) (5.8a)
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ir
x -: ', = 0 for symmetry (n 1,2 ... N)

2

[or ,= 0 for antisymmetryI (5.8b)

N+l = 4/N-i for symmetry

[or ON+l = - ON-1 forantisymmetryl (5.8c)

'P = 0 (5.8d)

It can be shown that the general solution to (5.7) subject to the boundary conditions (5.8c)
and (5.8d) is

2N- nmir
ln= I sin - [Am sin PmX + Bm cos pmx ]  (5.9)m=1,3,5... 2N

where p2  k' - (4/h 2 ) sin' mir/4N. Since the solution is real it follows that Am is imaginary if
k < (2/h) sin mir/4N. We now apply the remaining boundary conditions (5.8a) and (5.8b) giving

nmlr
2sin B m = 0 (n = 1,2...N) (5.10a)

M 2N

and

uJm sin - [ 2 - m sin-] = 0 (n = 1,2 ... N) (5.10b)M 2

The system (5.10a), assuming that det (anQ) 0 where a,, = sin n(2Q-l)i/2N, shows that B, = B3
=... B2N_- = 0 and the system (5.10b) becomes

nmi" /Pm

I sin - cos
m 2N 2 PmAr = 0 (5.10c)

For a non trivial solution we require pmA t 0 for some m (see Equation (5.9)) and hence require the
determinant of system (5.10c) to be zero i.e.



-62-

2N-I
fl cosJ.- (deta,,) = 0

n=1,3,5 2

or since we assume det(an2 * 0

iT
cos ;m = 0 for m = 1,3 .... or 2N-1 (5.11)

and so Pm = p where p is one of the integers 1, 3, 5 .... Thus

k2 = p2 + 4 .mir p = 1,3,5...
h2 4N m = 1,3,...2N-1 (5.12)

giving the MOL analytical approximation to the exact eigenvalues which in the symmetrical case are

k 2 = p2 + m 2  p = 1,3,5... (5.13)

m = 1,3,5...

Since h = r/2N the difference is

+16N2 [m2 72 = 7 4
- + 0(N - 4 ) (5.14)

7r2  L16N2 768N4  48N2

indicating accuracy of 0(h 2 ) as expected. It can be seen from (5.14) that for the smallest eigenvalue
(m = 1) the error will be < 10 - 3 if N > 15. For in = 3 using the same number of lines the error would
increase by a factor 81 and higher eigenvalues would rapidly increase in error. Values of k2 -p 2 found
from the three point scheme, formula (5.12), are listed in Table IXa for N = 3,4,5,6,7 and 8. This
table illustrates that accuracy for m = 1 is fairly good when N = 8 but that higher eigenvalues are
poorly approximated.

The conclusion of this subsection is that many lines have to be used with the three point
scheme in order to obtain a reasonable accuracy even for the smallest eigenvalue. Using such a large
number of lines would undoubtedly lead to a large instability when applying MOL numerically and so
we seek a difference scheme which is more accurate than the three line scheme. This will enable us to
use fewer lines and so help to minimize the effect of the instability. In the next section we next
consider such a scheme.

Note that the eigenvector for the three point scheme is

nmir

'n= A sinpxsin N A sin px sin my n
2N

which is exact in this case.
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5.3.2 The Five Line Scheme

In this case yy in Helmholtz' equation is replaced by formula (2.17b) on interior lines and
by formula (2.20) on the line adjacent to y = 0. As with the three line scheme the resulting problem of
linding the eigenvalues can be reduced to finding the eigenvalues of a matrix. However these cannot be
found in closed form as before but are found numerically.

Applying the five line scheme to Helmholtz' equation results in a set of ordinary differential
equations of second order in x written at each line 1,2 .... N. On seeking a solution of the type
On = an sin px we have

h2 a2 - a1  1.75
h(k 2 -p 2 )a_ - 6 + 1.7 (a 3 - a,) - 1(a 4 - a,)
2 ( 2 p)l 6 3

0.125 1.25
+ 0 (a5-a)) + 1.2= 0 (5.15a)3 3

4 1

h2 (k2 - p2 )an1 + -(an+ 1 +an1 I- 2a n ) - (an+2 + an- 2an) = 0
3 12

n = 2,3... N (5.15b)

with boundary values ao = 0, aN+ 1 = aN -1 and aN+2 = aN-2 for symmetry. To give a non trivial
solution the determinant of the matrix of system (5.15) should be zero. For example using N = 3 we
require

7 5 3.5
6 6 3

4 31 4det - T -...-
3 12 3

1 8 5

6 3 2

where T = h2 (k2 - p2 ) i.e. we require the eigenvalues of the above matrix written without T on the
main diagonal. If X I, X2 .... AN are the resulting eigenvalues then

k2 - p2  - i 1,2...N (5.16)
h

2&
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Now p = 1,3,5 .... to satisfy the boundary conditions n = 0 at x = 0 and 4n symmetrical about
x = w/2. Thus the eigenvalues k2 are determined from (5.16). Values of k2 -p 2 from Equation (5.16)
are listed in Table IXb for N = 3,4,5,6,7 and 8. This table illustrates the accuracy to be expected from
the five line scheme since the exact k2 -p 2 should be equal to m 2 for m = 1,3,.... 2N-1. The accuracy
of the eigenvalues corresponding to m = 1 and 3 is very good while the m = 5 and 7 eigenvalues have
about 1% accuracy at N = 8. Higher eigenvalues are poorly predicted. Note that convergence is rapid,
for example the errors for the m = 5 eigenvalue are about 30%, 5%, 3%, 1.5% and 0.8% with N = 4,5,6,7
and 8 respectively. This feature is to be expected since the error is 0(N-4).

To compare the above MOL results with those obtained by finite differences we can use the
formula given in Isaacson and Keller (1966) for the finite difference solution of accuracy 0(h 2 ) using
an N X N mesh on a quarter of the square of side ir i.e.

k2 = 16N' 2  + sin2 1

72 I 4N 4N

c.f. Equation (5.12). For example, to achieve 1% accuracy for the eigenvalue corresponding to m = 5

and p = 1 would require a 22 X 22 mesh.

5.3.3 Numerical Solution by the Five Line Scheme

The three line and five line schemes, solved analytically above, illustrate the accuracy one
might expect to obtain using MOL. We now proceed to the numerical procedure for solving the
equations and use the five line scheme. But first we inspect the numerical instability which is similar
to the instability encountered in boundary value problems (see Section 3.3).

As can be seen from the three line analytic solution (5.9, 5.10) we should have Bm = 0 and
Am = 0 except for the one A, say a, corresponding to Pm = p i.e.

nm~r

2- =asi-sinpx
2N

is the exact solution for three point difference scheme. However numerically, since we treat the
problem as an initial value problem, we will not have exactly Bm = 0 and AM = 0. Instead these will
take on small values perhaps of order 10 - 10. And so, unwanted terms in expression (5.9) for n will
be present and cause the inherent instability. This is likely to be significant if k < (4N/r) sin mir/4N
since then there is a term present in (5.9) containing the factor

1l6N 2  m__m.r kc2 x
sinh [ sin 2 -

[ff2 4N

which for m 2N-1 is

Ir2 4N 17r2~sinh L16 2 4~1c k x sinh L ki
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and when seeking the eigenvalue corresponding to m = 1 for example, with N = 8 and p = 1 say, a
factor can be produced of size sinh 10x. At x = 7r/2 therefore, even though A2N. - may be small, the
solution could be affected by this factor. Clearly then the number of lines we use cannot be too large
and it will be seen later that the N = 8 results are slightly affected by the instability while N = 7 results
appear unaffected.

In the previous analytical solution of the MOL ordinary differential equations we obtained a
solution explicitly involving x in the form sin px (p = 1,3 ..... ). Our choice of integration step length

8x will now determine how accurately this factor is determined. Suppose we require the error in sin px
to be less than 10 - 3 at x = ir/2. The fourth order Runge Kutta and Hamming's predictor modifier
corrector (Hamming, 1959) methods used in the computations yield errors

E 6X fV Q)
120

on each step where x < t < x + 6x and f is the function of x being approximated. Integration from
0 to 7r/2 in n steps therefore gives a total error

ET < n 1

from which follows n > 3p5 / 4 or, for p = 5, n > 24. Since this is an upper bound on the error it was
decided to use n = 20 steps from 0 to 7r/2 knowing then that this would produce sufficiently accurate
results for p = 1,3 or 5.

It was decided to seek eigenvalues in the range 0 < k2 < 65 using N = 3,4,5, ... as high as
possible before inherent instability swamped the solution; this turned out to be N = 9. Since we
expected a large number of eigenvalues in the above range and also some double and triple roots we
selected an increment k2 = 1 to locate roughly the eigenvalues by the process mentioned earlier, see
Equation (5.4). The resulting plots of (1r2 )/ against k2 are shown in Figure 5.1 where ri is the residual
in 0i at x = r/2 after carrying out the mintmization (5.2). The computation time for N = 3,4 .... 8
inclusive was 2 mins on an IBM 3032 computer.

The figures show that some roots are repeating for all values of N and therefore are reason-
ably accurate. Other roots however are not repeating and these are poor approximations to eigenvalues.
For example, with N = 3, m = 5 and p = 1 we should have k 2 = p 2 + m 2 = 26 but obtain a root k 2 - 14.3
which is consistent with values obtained in Table IXb. Having obtained these approximations we then
locate the roots more accurately by minimization using Equation (5.5).

If we suspect double or triple roots, for example near k2 = 50, we find one root in the usual
manner and then minimize the function shown in (5.6).

Table IXc lists the values of k corresponding to (mp) f (1,1) (3,3) (1,7) (7,1) and (5,5)
obtained by this technique for N = 4,6,7 and 8. It can be seen that the values are consistent with thoseof Table IXb (add on p to those values listed where p = 1,3,5,7).

The N = 8 solutions are affected by the inherent instability. This is demonstrated by 1r?
being as large as 0.0015 when k2 = 2.0032. The next eigenvalue k33 is better than that predicted in
Table IXb and therefore is likely to be a fortunate effect of the instability. The residuals in the (3,3)
mode were much smaller than those of the (1,1) mode; this is caused by greater instability in the latter
case.
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The accuracy of the results can be seen to be very good for the (1,1) mode while for the
higher modes the maximuni error, excluding m =7, is about 0.8%. The modes corresponding to m =7

are not listed for N < 8 since they clearly are not very accurate even when N =7 ( Table lXb). The
(1,7) mode is not as accurate as the (1,1) mode - greater accuracy for the (1,7) mode would require a
smaller 6x.

The local minimizations used to produce Table IXc took about one min. on an IBM 3032.
Powell's (1964) one dimensional minimization was used.
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TABLE IXa

EIGENVALUES k2 -p 2 FOR THREE LINE SCHEME GIVEN BY FORMULA (5.12)

m=l 3 5 7

N = 3 0.9774 7.30 13.61

4 0.9872 8.01 17.93 24.95

5 0.9918 8.35 20.26 32.18
6 0.9943 8.55 21.63 36.73

7 0.9958 8.67 22.48 39.72

8 0.9968 8.74 23.06 41.76

EXACT 1 9 25 49

TABLE IXb

EIGENVALUES k2 -p 2 FOR FIVE LINE SCHEME GIVEN IN FORMULA (5.16)

m=l 3 5 7 9 11

N = 3 1.0015 8.511 13.28

4 1.0001 9.461 16.74 30.1

5 1.0000 9.150 23.64 30.6 50.4

6 1.0000 9.046 25.66 37.3 54.1 75

7 1.0000 9.014 25.42 46.3 56.5 83

8 1.0000 9.003 25.21 49.34 65.9 86
EXACT 1 9 25 49 81 121

TABLE IXc

NUMERICAL EVALUATION OF THE EIGENVALUES k2 p OF HELMHOLTZ'

EQUATION IN A SQUARE OF SIDE

k2 2 2k 2 2
k11 k33 k17 k71 k55

N = 4 2.0001 18.461 49.934

6 2.0000 18.046 49.934
7 2.0000 18.014 49.933 50.41

8 2.0032 18.001 49.940 50.34 50.20

EXACT 2 18 50 50 50
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APPENDIX A

The Method of Integral Relations

As mentioned in the Introduction, there is another semidiscrete method which has been
widely used in aerodynamic problems, called the method of integral relations (MIR). Holt (1977)
reviews the aerodynamic applications of the method, but theoretical treatments or studies of asymptotic
convergence are rare.

The method is usually applied to systems of first-order partial differential equations. As in
MOL, the region is considered to be divided into strips which are parallel to one co-ordinate, x say. The
equations are partially integrated with respect to the other co-ordinate, y, to obtain an approximate
system of ordinary differential equations. The partial integration is performed explicitly by assuming
an appropriate y dependence of the integrands. Most applications have used for this purpose a polyno-
mial whose degree increases proportionally to the number of strips. The algebraic development
required for this procedure becomes very cumbersome for N > 2, so several investigators have used a
linear y dependence from one line to the next in order to obtain a simple recursive form for a system of
ordinary differential equations. We will consider the application of the latter procedure to the example
of Section 3.3, since an explicit solution can then be found.

First the substitution x = u, Oy = - v is made in Equation (3.4) to obtain the Cauchy-
Riemann equations

ux - vy =0; vx + Uy = 0. (Al)

With the polygon approximation for the y dependence, the partial integration with respect to y yields

l ' ' Vn+ l - Vn

2(Un+l + un) h = 0, (A2)

Un+ 1 - Un
'/2(vn + Vn+) + h = 0, (A3)h

where the notation is similar to that introduced in Equations (3.8) and (3.11). Differentiation of (A2)
with respect to x and manipulation yields:

1
1/4(u+ + 2u" + unp1 ) + 1(un+1 - 2u n + un-,) = 0, (A4)

n n n h2

producing a tridiagonal system for the x derivatives.

The solution of the above system is in the identical form of Equations (3.20) and (3.22),
except that

[/lm f (2N/b) tan (mvr/4N), (A5)

:, .. III ms i' .i~m , Q,0
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,os 0 + - 1-- (A6)
4N 2 / ] 4N 2 /

From Equation (A5) we see that the largest eigenvalue is

92N-I - 8N2 /irb, (A7)

giving Equation (3.25) for the instability factor in u,(1//) 2u( /2). Expansion of the hyperbolic cosine
function as in Section 3.4 shows that the MIR discretization error is 0(N- 2 ); but MIR is clearly inferior
to MOL from the viewpoint of the size of the eigenvalues ;m" That is, the MOL eigenvalues grow

* linearly with N, while the MIR eigenvalues are quadratic in N. Further, the extra complication of the
tridiagonal system for the x derivatives has been added without gaining the benefit of decreased
y-truncation error, contrary to the scheme of Appendix B.
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APPENDIX B

Tridiagonal MOL Systems With Accuracy (N- 4 )

As alternatives to the five-point difference schemes (2.17) we present here two schemes with
the same accuracy O(N-4) which involve only three adjacent lines. The schemes are not general but can
be derived in certain cases as follows.

Poisson Equation

We have in the notation of this paper from Taylor-series expansions

a2On h 4 a4 On

0n+1 - 20n + In-I = h2  
-- + 0(h6) (B1)

ay 2  12 ay 4

and also

a2 On+ 1  a2 /n a2On_ 1  a4On
2- + = h 2 - + 0(h 4 ). (B2)

ay 2  ay 2  ay 2  ay 4

On eliminating a4 On/y 4 from (Bi) and (B2) and substituting

'l a2 k 2 k
OWk a Ok
. .. . + f(xyk) (k=n- 1,n,n+1) (B3)

ay 2  x 2

from Poisson's equation, we obtain

12 (0n+ + 10ln + On-1) + h 2 ('n+1 - 20n + On-)

1
- (f(X,Yn+l) + 10f(X,Yn) + f(x,Yn-)), (B4)
12

giving a tridiagonal system of equations with accuracy 0(h 4 ) i.e., 0(N- 4 ).

In fact the system (B4) can be solved analytically in certain cases and in particular we refer
to the example of Section 3.3 and obtain the solution. It can be shown that this solution is identical
to (3.20)-(3.22) except that
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2N sin a" .1 1 n 2 
(5M b 4N 3 4N)

and

( 5 w2b2 711-i2b2
cosh 0 1 + 12 12N(B6)

With this scheme the y-truncation error is reduced by two orders of magnitude compared to (2.5)
while the largest eigenvalue P2N1-I is increased only by a constant factor of about ,/(1.5). We may
expect to obtain results of accuracy comparable to the five-point scheme (2.17).

First-Order Equations

Consider the first-order equations

api NQi

- + - + Ri  0 (B7)ax ay

i f 1, 2,..... m, where Pi, Qj and Ri are linear or nonlinear functions of the independent and depend-
ent variables, e.g., P, P(x, Y, u1 , u2 , ... urn). For instance the governing equations for two-
dimensional flow can be written in the above form.

Dropping the i subscript and using Qn to denote the value of Q on the n-th line for any one
of the i values in Equation (B7) we have from Taylor-series expansions

Qn+I - Qn-I aQn h 2 a3Q,
= ~ + h + 0(h4 ) (B8)

2h ay 6 ay3

and also

aQ.+! aQ. aQ._1 33Qn
- 2- + ay = h- + 0(h4 ). (B9)

0y ay y ay3

Eliminating a3 Qn/ay 3 from (B8) and (B9) and substituting

(aQk/Iy) = - Rk - (OPk/x) (k - n- 1,n,n+l) (BIO)

gives
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- (Pn + On' + P'-) + Q l QnI+ 1-(Rn+1 + 4Rn + R- = 0, (Bli)
6 f+ 2h6

where P' dffk/dx. Hence a tridiagonal systemn for the x derivatives is obtained which has error of
order h ,i.e., O'(N*4 ).
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